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We propose and investigate an euclidean functional integral approach for the construction of 
local kink operators and disorder variables. The main difference from the existing quasiclassical 
approach is the emphasis  on local fields instead of kink states and collective coordinate methods. 
We show that all two-dimensional kink fields emerge from the gauge theory of matter fields in 
Bohm-Aharonov fluxes. In the case of real scalar or self-conjugate Majorana fields the language of 
"flat non-trivial fibre bundles" is unavoidable since there is no minimal coupling to a vector 
potential. As an application we reproduce the construction of the Ising field theory and related 
models. In this way we obtain a unified treatment of the work of Sato et al. with that of other 
authors. 

1. Introduction 

Kinks and solitons entered QFT at the beginning of the 70's [1]. Solutions of 
classical non-linear field equations were incorporated as particle states into QFT via 
quasiclassical methods [2]. Unless the classical field theory possesses special proper- 
ties which stabilize those objects against quantum fluctuations, there will be no 
reason to believe that such classical objects have a counterpart in QFT. One such 
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special feature is the existence of an infinite number of higher conservation laws 
which is thought to be related to the integrability of the system. The exactness of the 
quasiclassical spectrum of the H-atom in QM or that of the sine-Gordon equation in 
QFT are well-known illustrations. Another, and perhaps more general mechanism, 
leading to this stability, is topology entering through homotopy classes. In this work 
we will attempt to lay the foundation for a functional integral approach for these 
topological objects which we refer to as topological solitons or kinks and which are 
related to disorder variables of statistical mechanics. The quasiclassical approach to 
those objects aims mainly at the construction of particle states carrying new 
quantum numbers and hence lying in different (superselecting) sectors than the 
vacuum. The mathematical method is that of introducing collective coordinates and 
it originated from nuclear physics [3]. This method is somewhat at odds with the 
spirit of QFT. It could be more appropriate to construct (local) interpolating fields 
and to delegate the particle discussion to the LSZ asymptotic behaviour of these 
fields. In this work we will show that the construction of such kink fields for 
two-dimensional QFT in the euclidean functional approach will lead to the statistical 
mechanics of matter fields (scalar and spinor fields) within Bohm-Aharonov [4] 
fluxes. The relativistic invariance of the correlation functions of kinks originates 
simply from the gauge invariance of the Bohm-Aharonov functional determinants. 
Our construction is related to the order-disorder duality of Kadanoff [5] and the 
resulting (in the physical points) dual algebra of 't Hooft [6], the space-like 
commutation relations of the kink operators with the original fields being a 
consequence of this duality. Whether new "particle sectors" exist or not is related to 
the existence of a broken symmetry phase of the model. The application of these 
general ideas to very special two-dimensional models already gives a wealth of 
results. Among other things we will show that the disorder and order variables of the 
Lenz-Ising field theory emerge from the study of ordinary and T 5 (axial) Bohm- 
Aharonov potentials for free massive spinor fields. This model also furnishes a 
natural illustration for a situation envisaged by Wu and Yang [7]: the language of 
fibre-bundle theory becomes unavoidable in its euclidean functional integral con- 
struction. Our approach will reproduce and unify the results of Sato, Miwa and 
Jimbo [17] with those of Lehman and Stehr [9] and Schroer, Truong and Weisz [10]. 
It also exposes the deeper reason behind the "doubling" of the Ising model which 
yields a simple formalism [11] for the derivation of its short-distance properties (e.g. 
critical exponents). A perturbative systematic for kinks (disorder variables) in the 
broken symmetry phase of the ~4 theory and Z N lagrangian as well as generalizations 
to higher dimensions will be left for future publications. 

The material is organized as follows: In sect. 2, we derive expressions for disorder 
parameters in the case of scalar and spinor fields. In sects. 3 and 4, we compute 
these parameters, in the context of free fields. In sect. 5 we construct explicitly the 
kink operators for scalar and spinor fields. In sect. 6 we study the case of real scalar 
or Majorana spinor fields. In sect. 7 we generalize to non-abelian kinks. Concluding 
remarks are presented in sect. 8. 
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2. Determination of local covariant disorder variables 
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2.1. SCALAR FIELDS 

Let us consider the theory of a complex scalar field, defined by the lagrangian 
density 

= - + u(e , (2.1) 

where U is a polynomial. 
Choosing q,(x) as our order parameter, we want to obtain the disorder field,/*(x), 

that obeys the usual, Z N, dual algebra commutation relations 

/*(x, t)q~(y, t) = e '(2"lN}°{ v-x}ea(y, t)/x(x, t) ,  

#(x,  t)Tr(y, t) = e *(2~r/NiO(y X)~r(y, t) t t(x,  t) ,  

(2.2a) 

(2.2b) 

where O(x) is the step function. 
There are two ways of doing this. 
The first one is just to guess formally what operator has the commutation rule 

(2.2). We can easily see that such an operator is (assuming formally canonical 
commutation relations) 

[ 2 7r f,.~° e~" ( ,;bi),,qS* -- ~b*i),,q$ ) d z~]. /x(x) = exp -~- .c (2.3) 

This method has the disadvantage that the obtained field is not path independent 
and, when computing correlation functions involving ~, one should introduce string 
renormalization counterterms, in order to get path independence. 

The second and more rigorous way is the field theoretical [12] generalization of 
the method of Kadanoff and Ceva [5], for computation of disorder variables' 
correlation functions in the lsing model. This procedure [12] gives us an already 
path-independent result. Let us apply it for the present theory. 

The first step is to assume that the correlation function (~t(x)/x*(y)) is obtained 
by "deforming" the action along the curve C, joining x and y, in the euclidean 
functional integral, 

+ a a , ~  e " " a ( z - ~ ) d l &  +C.c(~,dO *) , 
v,C 

(2.4) 
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where q,(q), q)*, 0.q,, 0.q,*) is a generic functional to be determined, ~c(q~, q,*) is a path 
renormalization counterterm and N is the usual normalization constant. 

The second step is to take path independence as a principle and use the symmetry 
we are interested in, in order to determine explicitly 0~g, and ~c. 

In the case of Thirring model, where we have the continuous symmetry q) ~ q, + a, 
~p = q) and £c is independent of q) [12]. 

Writing 

where F = C - C', and making the change of variable ~ --, ei2"/N~ inside the region S 
bounded by F, we obtain 

(.(x)#*(y))c = N f [Deo][Deo*]exp{ - f d2z[O~O*O~eo + M%*ep + U( ep,~*) 

I "  

- i t p  _ _  +12c( , ,q ,*)+aO~b f e (~(z  ~)d~.  
"x,C' 

+ aa(0 ¢)f' 
Jx,C 

+ i--~- ((~v( ~ ~)d~.  , 

where ($(O~q,) represents the variation of 0~b with respect to the symmetry operation. 
~c is assumed to be invariant under this operation. 

Eliminating terms proportional to one closed integral, we get 

.2~r 
aO.~ = - t ~ -  (q)O.4)* - •*0.0), (2.7) 

and using the fact that ~ ~ ei(2"~/N)O(s)q), we find 
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Inserting this result in (2.6) and using the delta-function properties, we arrive at 
the conclusion that 

(2.9) 

ensures path independence. 
The form of the path independent, two-point disorder correlation function is, 

therefore, 

- 4 ' * ' ~  

A", C 

(2.10) 

from which we can draw the formal euclidean disorder variable 

/~(x) = exp i ~ -  e~(dpS~ * - ¢p*~qS)dz~, , 
x.C 

(2.11) 

which corresponds to the Minkowski one, (2.3). 
Without the last bilinear part in (2.10) this disorder variable would not be path 

independent, i.e. (2.11) would not define a scalar euclidean field. 
Let us now introduce an external vector field A,, given by 

(2.12) 

We can, then, write (2.10) as 

[ ] 

~, (~)~*(y ))= u r iD,  l[ D** ] e x p [ -  f d2z {( D~, )*( D,  )+ M~*** + U( ,, **) } ], 

(2.13) 

where D~ = ~ - iaA~, a = 1 / N .  

The two-point disorder correlation function, can be described by a minimal 
coupling of q~ with the external field A~. In this formulation, path independence is a 
natural consequence of gauge invariance, since a path deformation is equivalent to a 
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gauge transformation: 

An, c, -A~ ,  c = 2rrfre~"3(z - f ) d f ~  = 2~r3~0(S). (2.14) 

In the same way, we can introduce order-disorder correlation functions 

(/~(x,)/x*(y,)q)(x 2)q~*(y2)) 

-- Nf[DO][DO*]exp[-- fd2z (¢[,/,, ~*, D.,~, (D~,~)*] } ] ~t)(X2 )(j~*( y2 ). 

(2.15) 

Now global path invariance is lost. The correlation function is multiplied by the 
factor e i2~/N (e-iZ~/N), every time the path is deformed over q,(x2) (q~*(Y2))- 

Our result, at first sight surprising, that the properties of disorder variables are 
described by a gauge theory of matter fields interacting with Bohm-Aharonov 
potentials is in full accordance with the ideas of 't Hooft and Kadanoff [5, 6] about 
disorder variables. One introduces disorder variable correlation functions by cou- 
pling the matter fields with external gauge potentials ("deformation" of the action). 
The phase ambiguity found in euclidean order-disorder correlation functions reflects 
itself in the dual algebra commutation relations existing in the Minkowski region, as 
was well established in the case of Thirring and Schwinger models [12]. 

2.2. SPINOR FIELDS 

Let us now treat the theory of a two-dimensional spinor field defined by the 
lagrangian density 

~ =  - i ~ k +  MfJ~k+ U(~k,~ ), (2.16) 

where U is a general polynomial in ~k and ~. 
We want to introduce the disorder parameter appropriate for this theory, using 

the same method applied previously to scalar fields. 
We write, therefore, in the euclidean region, 

(~(x))=Nf[D+][D~ ]exp[-fd2z{i~O4~-iM~,+ 8(4~, 47 )}1' (2.17) 

where D~ = 0 n - iaA  n, a = 1 / N  and 

A. = 2~f  ~ ~n~a(z - 8) d~. 
"x.C 

(2.18) 
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Again, locality of (~)  is a consequence of the gauge invariance of the theory. 
Observe that in the spinor case, due to the simpler structure of the current, we do 
not have the analog of the last bilinear part of (2.10). 

A problem now arrives, of how to determine the order parameter (o) ,  dual to 
(/z), in the present case. The solution is simple: in order to define Co), we couple 
the matter field with . 4  = @A~, the dual of the field A~, eq. (2.18). We are, thus, led 
to an axial gauge theory. 

Since in the euclidean spinor case, both + and ~ transform in the same way under 
a chiral U(1) or (ZN) transformation, when showing path independence of (o) ,  
along the same lines as the scalar case (2.5)-(2.10), the mass term restricts a to the 
only allowed value a = ½. The same phenomenon already occurred in the sine-Gordon 
version of the massive Thirring model [12]. 

3. The free massive complex scalar field 

The truly interesting two-dimensional models are those which possess an ordered 
phase, for example the ~4 interaction in the Higgs phase. For such models one would 
like to show that the vacuum expectation value (/~) vanishes. The physical reason 
for this should be that the energy of a matter field submitted to an Aharonov-Bohm 
flux in a non-trivial vacuum diverges logarithmically with the radius of the volume. 

Furthermore, one would like to study the 3-point function ( ~ ( x ) ~ * ( y ) e p ( z ) )  in a 
lowest order perturbation systematics, in order to make contact with the known 
semiclassical approach, which, instead of dealing with interpolating fields /~, ap- 
proximates the form factor of ~ in the particle-kink states. 

We leave these discussions for future publication and calculate/~ in the free field 
phase in which it condenses ((/~)=/=0) and therefore does not interpolate kink 
particles. 

We will consider the case of a free massive complex scalar field. In this case, we 
have 

N fib, ] [ Dq~* ]exp [ - f d2z ((D,,)*( )] (3.1) 

with A~, given by (2.18). N ~ is the same functional integral with 0;, instead of D~,. 
We see, therefore, after a trivial functional integration, that 

( / ~ ( x ) ) = D e t [  - 0 2 + M 2  ] _ D 2 + M 2  . (3.2) 

In order to compute the determinant, we introduce a circular boundary of radius 
R and impose Dirichlet boundary conditions over it. 
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It is more convenient to work in the "vortex gauge", defined by 

q~(r,q~)--,e-i"~ep(r,~p), a =  1/N.  (3.3) 

In this gauge, the Bohm-Aharonov operator,  eigenvalue equation is given by 

(3.4) 

Requiring integrability at the origin, we find the eigenfunctions 

1 
- e,.,~, (km.r) ,  ePm , . 2~7  ~ jm +°l  

m = O , ± l  . . . . .  n = l , 2  . . . . .  (3.5) 

where km,,R are the zeros of the Bessel function JIm+,~l ' 
The  Bohm-Aharonov eigenvalues are )~2 = k 2 + M 2. rn. n m, n 

We can, then, write (3.2), in the form 

I ~ In k°+] + M2 ( ~ ) =  e x p -  
L , = 1 k2n + M2 

+ ~ ~ In ( k + ; + M 2 ) ( k m ~ " + M 2 )  I 
. , : ,  .,~, (k~,, + u2)(<~,,, + u'-) j' (3.6) 

+ 
where k . . . .  are related to the zeros of Jl-,+< for m ~> 0, kT~.n to the zeros of Jim+<, 
for rn < 0 and k,,,, n are related to the zeros of the "f ree"  Bessel functions Jl'nl " 

Observing that large values of m should not contr ibute to (3.6), we can use the 
asymptotic  form of the zeros of a Bessel function J~ [13], 

x . . ° =  ( . + ~ . - ~ ) .  
4 / 2 2 _  1 

8 ( , + ~ - ~ ) .  + . . . ,  (3.7) 

in order to obtain 

k ~ ( k )  = k  + ~ra _ a z + - 2 a m  + . . .  (3.8) 
2R 2kR 2 " 

Inserting this expression in (3.6) and using the well-known relation for R --, oo, 

1 1 fo rrR2 m=l n=l (2~r) 2 dqo k d k ,  

1 ?} _ . trOd, ,  (m--O), (3.9) 
~rJ  o r t = l  
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we get, after integration, 

M ) [a/2+([2 r r 2 ] / 1 6 ) a  2 ] 

( ~ ) =  ~ -  , (3.10) 

where A is a momentum cutoff. The c~ term comes from the first term in (3.6) and 
t h e  a 2 term from the second. 

For the range 0 < c~ < 1, this expression approaches zero which is consistent with 
the expectation that outside perturbation theory the wave function renormalization 
factor, Z approaches zero. 

The power behaviour of Z, on the other hand, indicates that the disorder variable 
will be a renormalizable local field. Considering the next terms in (3.7) and (3.8) 
would not change the power dependence on A, but only introduce smaller correc- 
tions in the numeric coefficient in (3.10). 

Choosing Z appropriately, one can set ~t~)= 1. 
The order parameter { o ) =  {q~), is trivially seen to be zero. 

4. The free massive spinor field 

Again, as we did in the boson case, we are going to compute in this section the 
order and disorder parameters, Co) and (/~), for the free theory of massive spinor 
fields. 

Let us start with the disorder variable, which in this case is given by 

( / ~ ) :  NS[D + ][D~ ] exp[--  fd2z( i~O+ - iM f+  }], (4.1) 

where A, is expressed by (2.18). 
Doing the integration, we get 

(kt) = Det[ ~ - ~  - iM (4.2) 

Again, in order to compute the above determinant, we introduce a circular 
boundary of radius R, and are concerned with the eigenvalue problem 

( i O - i M ) ~ : X q / ,  X=?~o- iM.  (4.3) 

It has been noted in a different context [14] that Dirichlet boundary conditions for 
this problem destroy charge-conjugation invariance of the theory. The correct 
boundary conditions are shown to be the "spectral boundary conditions" [14], which 
happen to be also the appropriate ones for the Atiyah-Singer index theorem with a 
boundary term. 
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We can write (4.3) as 

(D ~---~ i~v~2 

or  
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- D I ÷ i D 2  1 +1) 

- D 2 ~ I  = )t20 ip 1 , 

~2 = ( 1 / / ) t o ) ( D 1  + iD2)@l • 

For each ~p, there exists a ~b' = -/5~k, such that 

(--ii9 -- iM)~b' = )tqp', )t' = - ) t  o - iM, 

and whose components satisfy the same equations (4.5). 
In the "vortex gauge", defined by (3.3), the integrable solutions of (4.5) read 

1 e'm~Jm+~(kr) ) 
t~m-- 4f~ --ei(m+l)WJrn+a+l(kr ) ' 

- - C  a_m_a_l~Kl") 

m~>0, 

(4.4) 

(4.5a) 

(4.5b) 

(4.6) 

~P = e-i(~/2)r~, (4.8) 

^ l ( eifm+l/2)~Jm+a(kr) ) 
~/rn = ~ __ei(m+l/2)q)jm+a +,(kr) ' 

1 e J_m_a(krj 

4m-- 4 ~  - - e " m + ' / 2 ' ~ J  m o , ( k r )  ' 

Now, these boundary conditions amount to 

Jm+~+1(kR) = O, 

J m o ( ~ R ) = 0 ,  

m>~0, 

m < 0. (4.9) 

m + ½ > 0 ,  

m + ½ < 0 ;  (4.10) 

obtaining 

In order to apply the spectral boundary condition, one has previously to make the 
transformation [14] 

m < 0 .  (4.7) 
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that is 

J,,,+,~(kR) = 0 ,  

We can therefore write (4.2) as 
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J,._,~(kR) = 0, m = 1,2 . . . . .  (4.11) 

t "~ (k~. -- iM)(-k~. -- iM)(k.+. - iM)(-k+. - iM)  
( /~)=exp ~ ~ ln(--~ :iM)(_k,,,n iM)(k.,n i-M~-~.~.----~ J L m = l  n = l  

=exp  2 In (k:2n + M2)(k~"-" + M2) (4.12) 
[m=l  .=1 (k2. + M2)(k2,.  + M2) ' 

where k. . , .  and k.~.. are the same as appeared in the scalar case. 
The computation now is almost identical to that we have already done in sect. 3 

and we readily conclude that in the free spinor case 

( M 2 1  '~:-2''~2/'6 
( /z)= ~ -  (4.13) 

Again, the power dependence on A shows the renormalizability of the spinor 
disorder variable. As one should expect, (~)  vanishes in the zero mass limit. 

Let us now compute the order parameter, (o) ,  defined in sect. 2: 

(o)=Nf[D+][Df/ ]exp[-- fd2z{i~ (¢--ia75d)q~-iM~q~}], (4.14) 

where A, is given by (2.18) and a = ½, as explained above. 
The functional integral is straightforward, giving 

Det[ i( ~ -- iays~)_-- iM ] ( )= i~- iM J" (4.15) o 

We are, therefore, concerned with the eigenvalue equation (again inside a circular 
box of radius R) 

[i(~--iayS~)--iM]~b=~, X=~o--iM, (4.16) 

which can be written as 

D I q'- i[) 2 - - i M  ~2 ~2 ' 
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where D. = a . -  iaA~ and 19 = 3~ + iaA.. This equation is equivalent to 

( - -DI  + iD2) ( / ) l  + i/)2)+1 = ~k20+l , 

= ~0  (/~1 q-i /)2)~1" (4.18) +2 

Again, for every +, there exists a + '  = -/~+, satisfying the equation 

[ - i ( ~ - i a y s d ) - i M ] + ' = ~ ' + ' ,  ~'= - - h o - i M .  (4.19) 

We can now write (4.18) in the "vortex gauge" as 

[--(32+lOr)+l(m2--a2)]+l=~,2O+!r2 , m = 0 , + l - -  . . . .  . (4.20) 

For  m 4 = 0, requiring integrability at the origin, we obtain the solutions 

l e i " ~ J ~ ( k r )  

+m-- 4~ ~o(~,  + i l ~ 2 ) e i . , ~ j ~ ( k r  ) , mvaO, (4.21) 

along with the corresponding + ' .  

Since we no longer have charge-conjugation invariance in (4.14), we can use the 
Dirichlet boundary  condit ion 

J ~ ( k ' R )  = 0, 

obtaining the m v a 0 contr ibution to ( o ) :  

C = exp 2 In (_kin ~ _ iM)(k. , .  
I n = l  

Using (3.7) again, we obtain 

m = -+ 1, ± 2  . . . . .  (4.22) 

iM) = exp In k'.~,, + M 2 
iM) ( m = l  n=l k2,,, + M2 " 

(4.23) 

Ot 2 WO¢ 2 
k'~n = kmn + - -  - -  q- O(ot 4). (4.24) 

2kR 2 4Rm 

When using (3.9), we have to consider in the present case that, since the angular 
momen tum is m = kR sin q0, the lower limit in the q0 integral is 1/AR. 



E.C. Marino et al. / Disorder t~ariables and kinks 485 

Introducing (4.24) in (4.23), we find, using (3.9) in the R ~ oo limit, 

C ~  exp{ - l n  R) .  (4.25) 

The proportionality constant is finite and the O(a 4) terms do not change the 
result. 

For m = 0, we have an attractive potential in (4.20) which, apart from the bound 
states give the same finite contributions as before. 

We conclude, therefore, that 

( o } -  exp{ - I n  R} = 0, (4.26) 

which is consistent with the fact that we are dealing with a free theory. 
It is worth remarking that the use of spectral boundary conditions in this case 

would reproduce the result (4.26). 

5. The construction of kink operators 

In this section we are explicitly going to obtain the kink operators p in the case of 
bosons and fermions. 

An elegant formalism to implement this is the zeta function formalism, which has 
been used to calculate rigorously the determinant of the Schwinger model using the 
't Hooft method [15]. Here we will follow another path for reconstructing the 
operators t~ directly in Fock space. 

Let us start with the free scalar case. Consider the euclidean Green functions 

<if(o) M%*q,)] 
i=1 

x l] ,¢,(x,),c,*(y,) 
i - - I  

= (.) ( 
\ i = 1  A. 

(5.1) 

The free field correlation functions in the external A~, are clearly sums over all 
contractions involving the basic Green functions (0(x)O*(y)}A, ,. In other words, the 
operator/z is, after suitable renormalization, of the form 

i f=  exp: {bilinear(a, b, a +, b* ) ) : ,  (5.2) 

where a and b are annihilation operator of particles and antiparticles. This bilinear 
exponential dependence, could also be expected from the formal expression (2.3). 
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The bilinear expression contains density terms ata, btb, as well as fluctuation terms 
ab, atb t. 

We first calculate the euclidean Green functions, directly using the (R--.  oo) 
continuous eigenfunctions (3.5), 

Oz(O)dp(x)~b*(y)) = G(x, y)A. 

1 [ ~  k d k  
='2"~ JO A2 + M 2 2 ei(m+a)(rPx-~V)Jm+a(krx)Jm+~(krv) 

rn=O 

1 [ ~  kdk  
+ ~ J o  k2 + M2 E e`( m+a)(tp~ ~Ojm_,(kr~)jm_~(krv) ' 

m~l 

(5.3) 
where 0 ~< ~ ~< 2¢r. In the above expression we have gauge transformed (3.5) back to 
the "string gauge", a transformation inverse to (3.3). 

The euclidean Green function is periodic in a, with period 1 and for the split into 
two sums we have assumed 0 ~< a < 1. 

Using the result [13] 

f0 ~ k Z + M  2 - k d k  j~(krx)J,(kry ) =I~(Mr<)K~(Mr>) ' (5.4) 

where I ,  and K,  are modified Bessel functions and r > ( r  <) is the largest (smallest) of 
r x and ry, as well as the integral representations [13] 

I~( z ) = 2-~i fcCC°sh~-~d~o, 

K.(z)=k f2e-ZC°ShV-  dv ' (5.5) 

where C is a complex path beginning at - iTr + oo and ending at i~r + oo, we obtain 

(for r~ < ry, without loss of generality) 

1 f d vf~d¢o E e(m+a)(iw~ 'wl-v-°~' 
G(x, y ) A , -  2i(2~r)2 ~ o o  c [m=0 

+ .,=~l e( mWa)(iw~ iq~Wv+'°)] eMr~c°sh'°e Mrvc°shv" (5.6) 

Taking the lower limit of the v integral to be - a  and choosing the curve C, to lie 
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on the right of Re w = a, one is in the region of convergence of the series. Therefore,  

[ e a(v+w--icp~+i~o~) 
1 limf dv~d,o 

G(x,  y ) & - -  2i(2~r)2 a - - a ¢  a "C a [ 1 -- e (icv,-i~,-v ,o) 

ea(V+c°+i'~'-ie&) ] 
e Mr~cosh,o e Mr,.coshv. ( 5 . 7 )  

| _ e(iW~ i w , . + v + ~ )  

In the first integral, we now substitute v - - , - v ,  and in the second, w + - ~ ,  
obta ining 

f dv  dw - dw 
- ~  [ C. C; ] 1 - -  e ( i ~ ' - ~ ' + v - ' ~ )  

e Mr'c°sh'~e MGc°shv, ( 5 . 8 )  

where C', is the reflected contour.  
Joining the paths,  leads to an w integral of the form 

~2= 7d,o - f£*f +Td,o + cf~, , (5.9) 

where C" is a rectangle with sides 2a  and 2~ri, centered in the origin. The residue at 
w = v in the C" integral gives the free Green  function Go(x, y). 

Therefore,  the basic euclidean Green function is 

1 
G(x,  y)~- 2 i ( 2 v )  ~ ( e - ' ~ ' -  e ' ~ ' ) f L d v  

f 
~ e a(icp'-iw' +v-w) 

× dw 
oc 1 + e (iw'-iw, +v w) 

e Mr'c°sh~°e--MrN°shc Jr- Go(x, y ) .  

(5.10) 

The  Green function in the physical region is obta ined by analytic continuation.  
For  example,  a contr ibut ion in the time-like region is obta ined by substi tuting 
r --, ir, i~p ~ X, where X is the rapidity,  (x  ° = rcosh  X, x~ = rs inh  X)- 

The result, after the change of variables v ~ - v  + i%,  ¢0 ~ - t o  + i%,  is 

G ( x , y ) A - -  sin art f f ~ d v f ?  e'~(°' ~' (27r)2 ~ d w  1 + e I~- ~) e iMr,cosh(,o X,)e-,M ..... hlv x,)  

+ O0(x, y), (5.11) 
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which is to be identified with 

1 ~ d p  1 q~ (Olin(O)la, ( p)bt(q)>e-ip.xe-iq, r 

+ Go(x, y). (5.12) 

Hence, we obtain 

<01/~ (0)[at(Op)bt(Oq)> -- 
sinacr ea(°p-°q)e (Op--Ou)/2 

2~ cosh[½(Op-Oq)] ' 
(5.13) 

where 0 is the rapidity variable in momentum space, (pl  = M cosh 0, Po = M sinh 0). 
The other kernels in the time-like region are obtained by crossing transformation, 

O ~ O + iqr: 

<bt(Op) 11~(0)Ib*(Oq)) = s in  a~" 
2Ir 

e,,(o, Oq)e-~O ~ Oq)/2 
- - e  i ' '  (5.14a) 

sirlh( ½ [ Op - O q] + ie ) ' 

sina~r ;a,, ea(°" Oq)e-(Oe-Oq)/2 
< a t ( O q ) l t ~ ( O ) [ a t ( O p ) > = ~  e s ~  i'Ve ~ Oq] ~- ie  ) ' 

s in  ~xv  e a ( ° e - ° , ; I e - ( ° p - ° 2 ) / 2  
(bt(Op)at(Oq)llt(O)[O>-- 2~r cosh(½[Op-Oq]) 

(5.14b) 

(5.14c) 

/~(x) = e: ~:o~x): , (5.15a) 

× { 1 [e_;~,at(Oq)a(Op)+e;~b,(Op)b(Oq) ] 
sinh(½[Op--Oq] + ie) 

l } . (5.15b  

with 

The space-like region is obtained by shifting the respective X'S by ½i~r and the 
results for the kernel are identical to (5.13), (5.14), as they should be. 

The resulting expression for #, therefore, is 
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It shows the basic property transformation under charge conjugation, 

CK~,C* = K~ ~,, (5.16) 

which was to be expected on the basis of the change of the string potential 
A~ ,~ -A~ ,  and the subsequent reduction of - a  in (5.3) to the unit interval 
- a = 1 - a(mod 1). 

Let us now consider the fermion case. The eigenfunction representation analog to 
(5.3) is 

G ( x , y ) =  ~ fo~Ckdk[ ~'(k'x)~'*m(k'Y)k - iM + Y'~"'(k'x)~t'(k'Y)YS]-k - iM , (5.17) 

where the "string gauge" eigenfunctions analog to (4.7) are given by 

+.,(k. x) = 1 
V,'4~T 

i (  m + a )o~ e J,,+~(kr) 

e'("'+~+l)~J l(kr) 
- -  - r e + a +  

m>~O, 

+m(k'x)= ~,,'~ -ei~'"+~+ll~J . . . .  ,(kr) ' m < 0 .  (5.18) 

Consider, for example, the (1.1) component, G~ = iMG~calar, where Gscalar is given 
by (5.3). The result in the time-like region follows from (5.13) and (5.14). It now, has 
to be compared with 

= ~ u t p ) g ( q ) e  ip.,- e tq'l' (0 I/~(O)q~(x)~ (Y)IO),, 2;f~vp,, ~7'qO 

X<O]l~(O)lb+(q)af(p))+ Go(x, y ) .  (5.19) 

In our y-representation, the spinors are 

with 

eO/2 ) 
u = ¢ ' ½ M  e 0 / 2  ' 

~= ¢½M (-e-°/2e°/2) ,  

e0/2 ) 
v = ¢ ½ m  - e  0/2 ' 

~ - - V , ~ ( e  °/2e°/2). (5.20) 

We obtain, therefore, in the present case 

sin a~r e,~(0p 0~) 
(5.21) (O[l~(O)lbt(Oq)a*(Op))=i 2rr cosh(½[Op-Oq])" 
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The discussion of the other components is consistent with this result. We obtain, 
in this case, 

sin art r ~  too K,,(O)- -~ L dOpL dOqe'~(G-°q) 

1 [e_i,~,~at(Oqla(Op)_ei,~.bt(Op)b(Oqll X sinh(½[O,-Oq]+ie) 

i [b(Oq)a(Op)+at(Op)bt(Oq)]} " (5.22) 
+ cosh(½[-Op-Oq])  

The charge conjugation for (tt(0)~k(x)~(y)), is again equivalent to a --, 1 - a. 
The present form of the operator is not convenient if one wants to calculate the 

short-distance behaviour of the t z correlation function. In that case, one uses an 
(justifiable) infinite resummation [16], to obtain 

# ( x ) =  N[e-i=~¢~(*)] , (5.23) 

where 

i oo ~ [ 1 (a(Op)b(Oq)_bt(Oq)at(Op)) ~o(0)= ~ffdOp~dOq cosh(l[Op__Oql) 

+sinh(½[Op Oq]+ie) (at(Op)a(Oq)-bt(Op)b(Oq)) (5.24) 

Here, N denotes the normal ordering which subtracts only the two-point vacuum 
expectation value, i.e., N[q~ 2 ] = q~2_ (~,2). 

This normal ordering is finite in the unit interval 0 ~< a < 1 for which our 
formalism has been derived. The reader easily recognizes in q0 the charge-conjugation 
antisymmetric sine-Gordon potential belonging to the free massive Dirac field. We 
could also have obtained this resummation in the framework of euclidean functional 
integration by using the "euclidean bosonization" of our lagrangian [12]. 

The short-distance singularities of the/~ correlation functions are now exposed. 
They are identical to those of an exponential massless free field. The dimension of/~ 
is simply a 2. 

In the scalar case the discussion of the short-distance behaviour and the zero-mass 
limit is more difficult because the corresponding potential, 
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has a logarithm square behavior and thus does not approach a zero-mass Bose field. 
Our formalism of relating string gauge fields to derivative of discontinuities in 

sections of vector bundles only allows one to deal with strings of strength a smaller 
than one. Higher strings have to be obtained by a limiting procedure of amalgamat- 
ing several strings in different positions at the end of our calculation. In the 
Minkowski-space operator formalism such a procedure corresponds to defining a 
disorder operator with strength/~ = na by "fusing" n/~'s of the "reduced" strength a 
via a short-distance limiting procedure 

/~,~(x) = leading term in lim f i  /~ (x i ) .  
A i ~ X  i :  I 

(5.25) 

In the spinor case one expects this extended formalism to yield a dimension (na)  2 
and not n • a2, i.e., the leading c-numbers in the short-distance expansion will involve 
positive powers. 

The order-operator o in the T + phase can be directly constructed within the 
Lieb-Mattis-Schulz approach to the Lenz-Ising model. In the scaling limit it takes 
the form [ 16-18] 

dPl : ip.~ , o = "  ~ - [ e  a t p ) + e i p " a * ( p ) ) e K ~ ' a % : ,  (5.26) 

where K is the same exponential operator as appearing in /~. Using the field- 
theoretical, short-distance expansion of Kadanoff  and Wilson [19] one may also 
obtain o as the leading operator in the product of a Majorana spinor with/~ [11]. 
Within the present context of the euclidean functional approach, the operator o 
emerges from the study of certain correlation functions of ~,5 gauge fields with a = ½. 
We will not give this derivation of (5.26) in this paper. 

6. Lenz-lsing field theory and non-trivial Z 2 bundles 

The formalism of Bohm-Aharonov is only applicable in the case of complex 
matter  fields. For self-conjugate fields, e.g. real scalar fields or Majorana spinor 
fields, there is no minimal coupling to a vector potential. However an antiperiodic 
boundary condition for "sections" still remains meaningful and leads to the disorder 
operator of the form (5.15) with c~ = ½ and a = b. Physically more interesting are the 
operators/~ and o in the case of a Majorana field. They are again obtained from 
(5.22) for a = b and ~ = ½. Starting from the Lieb-Mattis-Schulz [20] formulation of 
the Ising model, it is fairly easy [16, 17] to see that they are the disorder and order 
variables in the scaling limit T ~ T + . For the scaling limit from below T~, the order 
and disorder variables interchange roles apart from a subtle point concerning the 
appearance of Z 2 "spurion" operators by which one has to enlarge the Fock space of 
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the Majorana fields. Let us now have a close look at the mathematical framework for 
such a Z 2 gauge theory. The non-triviality of the topology for real (Majorana) fields 
forces us to use the language of fibre bundle theory. For example in the calculation 
of the ~(0) one point function we start from the pointed space R 2 - (0} which can 
be covered by two neighbourhoods (cp = polar angle): 

U I :  - E. < t]0 < q?- -~- £ ,  

U2: ~ r - e < c p < e .  (6.1) 

A flat non-trivial real vector bundle is obtained by taking as patching functions 

g ( c p ) = - I  i n ( T r - - e , ~ + e )  E U ,  N U  2, 

g(cp) = 1 in (-e, e) e U, N U 2 (6.2) 

which take values in the gauge group Z 2. In terms of real sections this leads to 
antiperiodic boundary conditions. Differently from the complex case, there exists no 
non-vanishing (at each ¢p) standard section with the help of which one could 
trivialize this vector bundle and therefore no minimal coupling to A~. Thus the 
functional integration approach to the Lenz-Ising field theory illustrates a point 
which had been particularly emphasized by Wu and Yang [7]. These authors used an 
example of a monopole situation for which, in principle, the Dirac language of 
singular strings was applicable. This is not the case in our illustration: the language 
of non-trivial vector bundles becomes a necessity. In addition, the Lenz-Ising model 
was not invented to illustrate this point and hence it is more "natural".  

Note that the case of kinks in Z N models for N ~  > 3 requires a complex vector 
bundle and hence can be formulated in the standard language of Bohm-Aharonov 
potentials A~. Note, furthermore that on the basis of the Z N selection rules in the 
broken symmetry phase 

( / ~ ( x , ) . . . / ~ ( x n ) )  = { = 0, n 4 : 0 ,  modN,  
re0,  n = 0 ,  m o d N  

(the last property being related to ihe appearance of the identity operator in the 
leading short-distance term for the product of N operators ~), one expects such a 
model for N ~  > 3 to be dynamically always non-trivial: an antiparticle has to be a 
bound state of N -  1 particles [21], 

Finally, we would like to comment on the role of "doubling" in the Ising model. It 
is clear from our formalism that the formation of a Dirac field from two Majorana 
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ones allows, on the one hand, the use of a vector potential and hence the bosoniza- 
tion formalism (5.23) and, on the other hand, leads to a square relationship between 
the/~-correlation functions of the simple and the doubled model. The latter fact is 
read off from the determinantal representation of correlation functions. This dou- 
bling, in fact, was used as a construction of the Ising correlation functions using the 
sine-Gordon potential [16]. In the past this construction appeared somewhat artifi- 
cial compared with the more direct kink construction via Clifford algebra techniques 
[17]. However, now, with the appearance of a unified functional integral formalism, 
it is a logical and simplifying step, because the formalism of exponentials of 
sine-Gordon potentials is much more developed and certain properties like the 
short-distance singularities, the massless limit and the very elusive Kadanoff-Ceva 
selection rules on one base line are natural consequences of the doubled model. 

The formalism of doubling also extends to the Lenz-Ising o operator. There, using 
the language of Fock-space operator, one needs to double the + factor in front of/~ 
as well; our o in the Dirac (doubled) model is not the same object as the square (in 
the sense of the functional integral representation) of o in the Majorana model. 
Without going into details, we quote the answer for these two hermitian operators 
which had been obtained previously without using functional integration [11]: 

 D(x) : + ' e  ) : : cosl/ - (x) , 

1 
OD(X ) = ~-~i (" e'~W: -- " e - ' ~  ") = "  sinv'~-q0(x) ". (6.3) 

Their special form of sums of exponentials is related to the peculiarity of the case 
O L ~  1 " 

In the doubled version one loses the sign ambiguity, which was a property of the 
mixed functions in the simple model, and the operator become relatively local, 
instead of relatively dual. 

7. Generalizations to non-abelian kinks 

In the previous sections we have seen that the euclidean functional integration for 
two-dimensional kinks is the theory of matter fields in Bohm-Aharonov fluxes or in 
a more mathematical language: the theory of flat vector bundles over pointed R 2 
which may or may not be topologically non-trivial. There exists, however, another 
approach to this problem which has been at times advocated by 't Hooft. The idea is 
to consider the singular gauge situation of Bohm-Aharonov as a limit of smooth 
gauge configurations. This point of view becomes useful in situations in which one is 
able to calculate generic determinants [22]. This is possible in two-dimensional 
massless spinor models with abelian or non-abelian gauge fields. Consider, e.g. a 
U(n)  massless spinor field in a non-abelian gauge field A_w Assume that the 
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asymptotic behaviour of A~ is such that the "partial indices" (explained below) 

h i = O ,  

i . e .  a n  asymptotic behaviour of the form (~o -- polar angle) 

A~, ~ iU-  IO~,U, 

with 

with vanishing partial winding numbers 

e ift(rp) 0 

0 e iL(w) 

(7.1) 

, ( 7 . 2 )  

j~ - lrr f d2ye~'~K:b( x,  y )eXOF2o( y ) , 

DahKbC( x . . , , y )  = - - ~ ( x - - y ) ~ ° c ,  

e~vDabKbC(x y) = 0. (7.5) 

Hence K is the spinor Green function in the adjoint representation ( K ~  = K~ ++- iK2) 

( 0 
D, + iD 2 0 --K+ 0 = - ~" 8 (x  - y ) .  (7.6) 

Consider as an example the disorder operator/~ of an abelian (U(1)) massless Dirac 

with 

= J02 f/(cp) d c p - - -  = O. (7.3) ni 

The equivalence relation used in (7.2) means that there exists a non-singular unitary 
transformation V(cp) with 

U( ~p ) = Vt (  ~p )U(°)( ~p ) V( ~p ). (7.4) 

The determinant on these configurations A~ has the form [22] 

_ _  - -  _ . a  a 2 DethO - F -- f j~ A,d  x ,  
In Det i~' 
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field. The two-point function (l++(x)it~(y)) is obtained as the functional determi- 
nant evaluated in the vortex gauge: 

A,(z)=e¢ q (z-x)~ fl(z-y),] (7.7) 
aCz-x)2 ( z - y )  2 " 

An examination of the boundary condition shows that the determinant e - r  remains 
finite in the limit R ~ oo only if a = fl, in which case one obtains the result 

(7.8) 

where m is regularization parameter. 
The % two-point function yields the same result from the functional determinant 

corresponding to the ,/5 (axial) vortex potential analogous to (7.7). Note that an 
euclidean axial potential or a mixed vector-axial vector potential leads to an A + with 

A+ ~(A_)*. 
Writing the Schwinger determinant 

V = f A.( z )A.( z )d2z (7.9) 

in the -+ representation [the general determinant (7.5) simplifies to this case in the 
abelian situation] one obtains the general mixed correlation function of % ' s  and 
/ ~ ' s  including the selection rule 

~a,---0, ~fl,=0. (7.10) 
i i 

In the non-abelian situation the ~t's and o ' s  correspond to "non-abelian rotation 
strings" (y 5 in the case of o ' s )  A_, = iU IO, U: 

/ ~ = ~ ( x ;  U) ,  o=a(x;W). (7.11) 

The selection rules may be most easily expressed in terms of the logarithms 
(generators) of the U ' s  and W ' s  which we will call H and K: 

EHi=0, ~K,=0. (7.12) 
i i 

In addition to the non-abelian "half-space" phase factors occurring in the duality 
relations between/~'s and o ' s  there is a new phenomenon which may be observed 
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already on the level of commutation relations between/~'s only: 

= I wz 'wiu  ) , 

( /z(y;  U, U2U~')~t(x; Oil , 

X < y ,  
(7.13) 

x>y. 

The results of this euclidean functional approach can now be related to the work of 
Sato et al. [8] on the relation of the Riemann-Hilbert problem with disorder operator 
in massless Dirac field theories with one essential difference however. The selection 
rules (7.12) lead to the vanishing of many ~b-~ 3-point functions, 

unless the selection rules (7.12) hold. Hence in most interesting cases the 3-point 
functions corresponding to the Riemann-Hilbert problem are related to the vacuum 
expectation values of #'s by infrared-divergent factors and hence do not constitute 
objects belonging to QFT. 

8. Concluding remarks 

In this work we show that the ideas of Kadanoff and 't Hooft on order-disorder 
duality, hitherto mainly used for lattice theories, have a natural extension to 
continuous field theories. Applied to the problem of kinks in two space-time 
dimensions they yield euclidean functional integrals for matter fields coupled to 
Bohm-Aharonov gauge potentials. In continuous QFT the rather subtle renormaliza- 
tion properties of kinks become inexorably linked with gauge invariance, the latter 
being responsible for the path independence which in turn yields the Lorentz 
covariant transformation properties of kinks. Another advantage of the continuous 
approach is that properties related to non-trivial topology become more clearly 
recognizable. 

This work constitutes a first attempt to understand kinks (topological solitons) 
and disorder variables in continuous field theory outside the quasiclassical approach 
and hence many problems remain open. Among the important theoretical problems 
not discussed in this work is the structural relation between the euclidean functional 
integrals and the physical correlation functions, i.e. the Osterwalder-Schrader prop- 
erties for mixed order-disorder correlation functions. We also left the perturbative 
construction of kinks in the broken symmetry phase and the generalizations to 
higher dimensional kinks for future investigations. 

We are deeply saddened by the premature death of our friend and colleague Jorge 
Andr8 Swieca and we miss very much his clarifying participation in the writing of 
this paper. 
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